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MotivationMotivation



Jean Baptiste Joseph Fourier
(March 21, 1768 - May 16, 1830) 

F h th ti iwas a French mathematician
and physicist who is best known 

for initiating the investigation 
f F i i d th i li tiof Fourier series and their application 

to problems of heat flow. 
The Fourier transform is also named
in his honor

On the Propagation of Heat in Solid Bodies

in his honor.



Jean Baptiste Joseph Fo rierJean Baptiste Joseph Fourier
• On the Propagation of Heat in Solid Bodies (1807)

committee: consisting of Lagrange, Laplace, Monge and g g g , p , g
Lacroix .

• Two objections:
1. All these are written with such exemplary clarity - from a logical as 

opposed to calligraphic point of view - that their inability to persuade 
Laplace and Lagrange ... provides a good index of the originality ofLaplace and Lagrange ... provides a good index of the originality of 
Fourier's views.

2. Biot against Fourier's derivation of the equations of transfer of heat. 
Fourier had not made reference to Biot's 1804 paper on this topicFourier had not made reference to Biot's 1804 paper on this topic 
but Biot's paper is certainly incorrect. Laplace, and later Poisson, 
had similar objections. 



Jean Baptiste Joseph Fo rierJean Baptiste Joseph Fourier
• The Propagation of Heat in Solid Bodies 

(1811)(1811)
Report of the Paris Institute about the 1811 

th ti dmathematics award.
• Fourier submitted his 1807 memoir together with 

additional work on the cooling of infinite solids and 
terrestrial and radiant heat. Only one other entry was 

i d d th itt t t d id threceived and the committee set up to decide on the 
award of the prize, Lagrange, Laplace, Malus, Haüy and 
L d d d F i th iLegendre, awarded Fourier the prize. 



Jean Baptiste Joseph Fo rierJean Baptiste Joseph Fourier
• The report was not however completely 

favourable and states:favourable and states: 
• ... the manner in which the author arrives at 

these equations is not exempt of difficulties 
and that his analysis to integrate them still y g
leaves something to be desired on the score 
of generality and even rigourof generality and even rigour.

• Fourier won the prize but the paper was not 
t d f bli hi !accepted for publishing!



Jean Baptiste Joseph Fo rierJean Baptiste Joseph Fourier
• Fourier was elected to the Académie des Sciences in 

1817.1817. 
• In 1822, Fourier became Secretary, and the Académie

published his prize winning essay Théorie analytique depublished his prize winning essay Théorie analytique de 
la chaleur in 1822.
Why Laplace & Lagrange did not agree with• Why Laplace & Lagrange did not agree with 
Fourier’s point of view?

• 主要是當時的數學環境還無法完全証明 Fourier 級數理論的嚴格性，因此
Lagrange、Laplace 一直持保留態度，這個混亂的情況到1811年，Fourier 以
擴增的論文獲得數學大獎後，仍然未能解決，也造成得獎論文不能發表的怪
事。事實上這場論戰，要經過 Poisson、Cauchy，一直到 Dirichlet 登場(weak 
projection studies became the main stream of mathematics in the subsequent 
decades)，才真正落幕。decades)，才真正落幕



Jean Baptiste Joseph Fo rierJean Baptiste Joseph Fourier
• Why Laplace & Lagrange did not agree with 

Fourier’s point of view?Fourier s point of view?
• Fourier Series use infinitely differentiable functions. 

Wh th t t i l di tWhy use them to represent a simple discrete 
function (non-periodic)?
主要是當時的數學環境還無法完全証明 F i 級數理論的嚴格性 因此• 主要是當時的數學環境還無法完全証明 Fourier 級數理論的嚴格性，因此
Lagrange、Laplace 一直持保留態度，這個混亂的情況到1811年，Fourier 以
擴增的論文獲得數學大獎後，仍然未能解決，也造成得獎論文不能發表的怪
事。事實上這場論戰，要經過 Poisson、Cauchy，一直到 Dirichlet 登場(weak 
projection studies became the main stream of mathematics in the subsequent 
decades)，才真正落幕。)



MotivationMotivation

• The non-periodic trend of a data string 
l i t d th Di t C talways introduces the Direct Current 

(DC) contamination to almost the whole ( )
spectrum。



MotivationMotivation
Spectrum with non-periodic 
trend
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MotivationMotivation

• We had developed a diffusive Gaussian 
filt t d l ith thi blfilter to deal with this problem。

• However the transition zone of theHowever, the transition zone of the 
Gaussian filter is too wide and a huge 

ti i fcomputing resource is necessary for a 
narrow transition zone.narrow transition zone.



M it f U i Diff i FiltMerit of Using a Diffusive Filter

• No unknown dispersive error (phase 
) i i t d d i t t ferror) is introduced – important for 

precise data analysis.p y



Theoretical DevelopmentTheoretical Development



Ga ssian SmoothingGaussian Smoothing
• For a data string                Gaussian smoothing 

gives
( , )j jx y

gives

ji∑
∞

Δ1 222 2/)()( ye
k

y i
i

xji
j = ∑

−∞=

Δ−− σ1 222 2/)()(

xek xji

Δ≈= ∑
∞

Δ−− σπσ 2222 2/)()(

• This is an approximately diffusive low passed

x
i

Δ∑
−∞=
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A diff i filt b t th t iti i t idA diffusive filter but the transition zone is too wide

• Original data
xy

λ
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• After smoothing, no phase error is introduced.
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Gaussian Filter
An Iterative Filter basing on Gaussian smoothing

Jeng, Y. N., Huang, P. G.. and Cheng, Y. C., “Decomposition of One-
Dimensional Waveform Using Iterative Gaussian Diffusive Filtering
M th d ” P R S A (2008) l 464 1673 1695Methods,” Proc. Roy. Soc. A. (2008) vol.464, pp.1673–1695,
doi:10.1098/rspa.2007.0031, Published online 13 March 2008.



Ga ssian FilterGaussian Filter

• Repeatedly smooth the remaining high 
f tfrequency part. 
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1.Accumulated smooth part → original data as iteration increases
2.High frequency part            → final high freq. partg q y p g q p



Gaussian FilterGaussian Filter
• Original data xy

λ
π2sin=

• Iterative filter with factor     & iteration step 
nλ
σ p

number , gives the accumulated smoothed 
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Attenuation factor     vs.         &       with fixed     b m σλ
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Gaussian FilterGaussian Filter

σGiven b1 & b2 solve m &       from 
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After specifying       &       , apply the iterative Gaussian smoothing (with 
a fixed     )      iterations 

to obtain the smoothing & high frequency parts
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Required  iteration no. & smoothing factor 
t it i

0 01 0 001 0 0001 0 00001 0 000001δ

w.r.t. accuracy criteria

• 0.01,     0.001,   0.0001,  0.00001,  0.000001 
• 33        127        410        1199          3306gm
δ

• Iteration no. increases as    decreases
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Eff f G i filEffect of Gaussian filter upon a 
polynomialpolynomial
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Eff f G i filEffect of Gaussian filter upon a 
polynomialpolynomial
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For a sufficient large iteration cycles, theFor a sufficient large iteration cycles, the 
non-periodic trend will be ultimately removed.



Error of high frequency part

Non-sinusoidal trend is 
removed after 2 cycles

Error around 2 ends Increases 
as iteration cycles increases
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Iterative Gaussian Smoothing Methods forIterative Gaussian Smoothing Methods for 
Finite Data String

Upper bound of error penetration distance

)(log10 mk ⋅≈



M i L t S FiltMoving Least Squares Filters
1M 1>M



Moving Least Squares FilterMoving Least Squares Filter

★ Consider a data string of the form
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Moving Least Squares FilterMoving Least Squares Filter

★ Assume the error functional as
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Moving Least Squares FilterMoving Least Squares Filter
★ To prove 
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★ For             , use hand or Mathematica.
★ Otherwise properly split the procedure and

11<M
★ Otherwise, properly split the procedure and

can prove it up to                .
★

300=M
★ For a still high order, high computing device

and algorithm are necessary.and algorithm are necessary.



Moving Least Squares FilterMoving Least Squares Filter

★ Repeatedly apply the moving least
squares method for      cycles gives
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removed if                 .NmM >2



Moving Least Squares FilterMoving Least Squares Filter

★ The transition zone is determined by
3 parameters:
2 equations
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★ For a given order solve forM &★ For a given order       solve for           .    M σ&m



Moving Least Squares FilterMoving Least Squares Filter
Increase order, decrease transition       Increase iteration cycles, decrease
zone’s width                                              transition zone’s width
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Moving Least Squares FilterMoving Least Squares Filter

★ For a single moving least squares filter.
★★ Increase order, decrease          increase 12 / λλ σ



Moving Least Squares FilterMoving Least Squares Filter

★ Solution of [ ]
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Moving Least Squares FilterMoving Least Squares Filter

★ For small          , large     cycles is 
required As order increase is

12 / λλ m

M mrequired. As order     increase     is 
reduced. 

M m



Moving Least Squares FilterMoving Least Squares Filter

★ For a wide           , only lower order     is 
possible

12 /λλ M
possible. 



Moving Least Squares FilterMoving Least Squares Filter

★ For a              , the solution is critical 
because the evaluation of

1.1/ 12 ≤λλ
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Moving Least Squares Filters
Procedure

★ Evaluate the Fourier spectrum via FFT
★★ Determine the transition zone  
★ Find suitable

12 λλ &
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★ Perform inverse FFT of the resulting
spectrum desired high freq partspectrum desired high freq. part

★ Required CPU = 2 * FFT’s CPU + extra★ equ ed C U s C U e t a



Results & DiscussionsResults & Discussions



M i L t S FiltMoving Least Squares Filters
Test CaseTest Case



Moving Least Squares FilterMoving Least Squares Filter
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Moving Least Squares FilterMoving Least Squares Filter

To extract the trend
1. Small     gives good interior

accuracy.
2. For large , the error isσ

σ

2. For large      , the error is 
around 210−



Moving Least Squares FilterMoving Least Squares Filter
If the trend is made
complicated, the resultp
is similar.



Moving Least Squares FilterMoving Least Squares Filter

★ For this case the required transition 
zone width is parameters arezone width is               , parameters are   2 1/ 1.3λ λ ≈
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Moving Least Squares FilterMoving Least Squares Filter

★ For this case the required transition 
zone width is parameter arezone width is                       , parameter are   

1002616065460105312 6 =====×= MmMm ...,.,;,.,. σσ
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Error at two ends are similar for
1. Gaussian smoothingg
2. 100 th order moving least squares
Error bond are )(log10 mk ⋅≈ 10



Turbulent DataTurbulent Data

★ Both Gaussian filter
(126 it ) & i(126 its) & moving
least squares filter
(41th order 1 its), 
trend & lower freq.q
part consist with
each other as showneach other as shown.  



Turbulent DataTurbulent Data

★ Both Gaussian filter
(126 it ) & i(126 its) & moving
least squares filter
(41th order 1 its), 
trend & lower freq.q
part consist with
each other as showneach other as shown.  



ApplicationsApplications



Sharp Filter
Procedure

★ Use the proposed fast and sharp filter to
remove the non periodic trend + extreme lowremove the non-periodic trend + extreme low
frequency components. y

★ The high frequency part and it’s spectrum
bt i d i lt lare obtained simultaneously.     

★ Any filter or infinitely sharp filter upon they y p p
spectrum is straight forward.



Sharp Filter
Application

★ It has been proven that a Gaussian window 
imposing upon the spectrum centered atimposing upon the spectrum centered at 
certain freq. is the spectrogram coefficient ofg
the freq.. 

★ The high freq enc part’s spectr m is★ The high frequency part’s spectrum is
ready simultaneously.     y y

★ A spectrogram with certain window is
t i ht f dstraight forward. 



Characteristics of Morlet TransformCharacteristics of Morlet Transform 
(Continuous Wavelet Transform)
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Gabor TransformGabo a s o
(short time Fourier transform)

Gaussian window on time domain
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Application (2)Application (2)
SOI vs. CTISOI vs. CTI



SOI s CTISOI vs. CTI 
• CTI : normalized monthly sea level pressure 

index based on the pressure records p
collected in Darwin, Australia and Tahiti 
Island in the eastern tropical Pacific.

• SOI : average large year-to-year sea surface g g y y
temperature anomaly fluctuations over 6°N-
6°S, 180-90°W An index of El Ni  on&&

• SOI : its negative peak often occurs with a 2  
to 7 year period, corresponds to a strong El y p , p g
Niño (global warm) event .



SOI s CTISOI vs. CTI
• Huang had employed the ensemble HHT to 

study the correlation between SOI and CTI。study the correlation between SOI and CTI。
• 3 modes 2.83, 5.23 and 20.0 years/cycle. 
• Cross-correlation coeffi= -0.78, -0.79, and  

0 75 respectively Confirm 2 to 7 year-0.75, respectively. Confirm 2 to 7 year 
period of correlation.

• How about the detailed cross correlation 
coefficient distribution with respect to p
frequency variation?



CTI & SOI ra dataCTI & SOI raw data

• CTI 

• SOI 

Negative peaks of SOI are roughly corresponding to positive peaks
of CTI.



SOI vs CTISOI vs. CTI

★ Cross correlation
f t f 1 2 &factor for 1, 2, &
3 Fourier modes.

2-7 years/cycle
does have highg
correlation coeff.



SOI vs CTISOI vs. CTI

★ Cross correlation
f t f th 7factor for the 7
Fourier modes:

1.85-25 years/cycle
does have highg
correlation coeff.



Application (3)Application (3)
ECG vs ABPECG vs. ABP



ECG vs ABP cross correlationECG vs. ABP cross-correlation

★ Data base: on open domain (Web site)
M d GB M k RG A d t b t tMoody GB, Mark RG. A database to support
development and evaluation of intelligent
intensive care monitoring. Computers in
Cardiology 1996;23:657–660.gy ;
It consists of over 104 patient-days of real-time signals
and accompanying annotationsand accompanying annotations.
For Intensive care patients.



The false ventricular-related (VT) alarm ( )
case

★28580- 28595 sec.
( ith l i h( with clear in-phase
correlation factor
around 1Hz (heart
beating freq. in mostg q
intervals)

Need not specialNeed not special
attention.



The true ventricular-related (VT) alarm ( )
case

★6014-6026 sec.
N i h l tiNo in-phase correlation
between ECG & ABP

around 1Hz freq.



The true ventricular related alarm caseThe true ventricular-related alarm case

★6200-6229 sec.
No in phase correlationNo in-phase correlation
between ECG & ABP

around 1Hz freq.



The true ventricular related alarm caseThe true ventricular-related alarm case

★5520-5579 sec.
No in phase correlationNo in-phase correlation
between ECG & ABP
around 1Hz freqaround 1Hz freq.

In most data intervals noIn most data intervals, no
in-phase correlation
between ECG & ABPbetween ECG & ABP
around 1Hz freq exists.

The patient is in criticalp

condition need special care.



Enhanced IMFEnhanced IMF



New IMF Generator via cubic spline p
polynomial + Least Squares method

Smooth response is
not smooth enough
Yet !Yet !



New IMF Generator via cubic 
spline polynomial

Original data is the
GSTA (Global SurfaceGSTA (Global Surface
air Temperature 
Anomaly)



O i i l HHT (IMF1)Original HHT (IMF1)

Original periodic part                                IMF1 (original HHT)
unknown extra part in low
freq. regime is obvious!



Improved IMF1(use spline polynomialImproved IMF1(use spline polynomial 
+ least squares)

Original periodic part                                IMF1 (new HHT)
minor imperfections still exist!



C l iConclusions
★The fast and sharp diffusive filter is proposed. 
★Th i d CPU ti i li htl l th★The required CPU time is slightly longer than 

2 times of the FFT.
★For a narrow transition zone (width < 1.125), 

the solution is unavailable now It needs athe solution is unavailable now. It needs a 
high accuracy algorithm + high accuracy 
computing devicecomputing device.

★It is successfully applied to several cases.



Future WorksFuture Works



Future WorksFuture Works
★To construct a table to show the best 

&combination of parameters      
for a given transition zone

σ&,, mM

λλ &for a given transition zone          .
★Apply to science and engineering

12 λλ &

★ pp y g g
problems.

★The application is valuable because this
filter is a new tool to look into minorfilter is a new tool to look into minor
modes in the low frequency regime.modes in the low frequency regime.



Thank You !Thank You !







Moving Least Squares FilterMoving Least Squares Filter

★ For 


